地盤補修の施工状況等に関する

オープンハウスの資料

【シールドトンネル工事の状況等】

令和7年8月30日

東日本高速道路(株) 関東支社 東京外環工事事務所 国土交通省 関東地方整備局 東京外かく環状国道事務所 中日本高速道路(株) 東京支社 東京工事事務所

目 次

•	事業概要	1
•	東京外かく環状道路(関越~東名)現在の状況	8
•	中央JCT部の工事	12
•	中央JCT ランプシールドトンネル工事の掘進状況等	16
•	地下水の観測結果	55
•	大気質・騒音・振動の調査結果	58
•	安全対策の取り組み事例	59
•	利用者等の避難	60
-	お問い合わせ先 ····································	61

東京外かく環状道路の概要

首都圏三環状道路の概要

首都圏三環状道路は、都心部の慢性的な交通渋滞の緩和及び、環境改善への寄与等を図り、さらに、我が国の経済活動の中枢にあたる首都圏の経済活動とくらしを支える社会資本として、重要な役割を果たす道路です。

近年の開通により、首都圏全体の生産性を高める重要なネットワークとしてストック効果を発揮しています。

	Я	91	
_	解逐済区間		2 車級
_		_	4.車線
	事業中		4 車線
000	予定路線		6準線

※1 資機材の調達等が順調な場合※2 大栄JCT~多古IC間は、1年程度前倒しでの開通を目指す

2025年3月時点

東京外かく環状道路の全体計画

全体計画と幹線道路網図

[JCT・ICは仮称・開通区間は除く]

東京外かく環状道路は、都心から 約15kmの圏域を環状に連絡する延 長約85kmの道路であり、首都圏の渋 滞緩和、環境改善や円滑な交通ネットワークを実現する上で重要な道路 です。

関越道から東名高速までの約 16kmについては、平成21年度に事業 化、平成24年4月には、東日本高速 道路(株)、中日本高速道路(株)に 対して有料事業許可がなされ、国土 交通省と共同して事業を進めていま す。

東京外かく環状道路(関越~東名)の計画概要

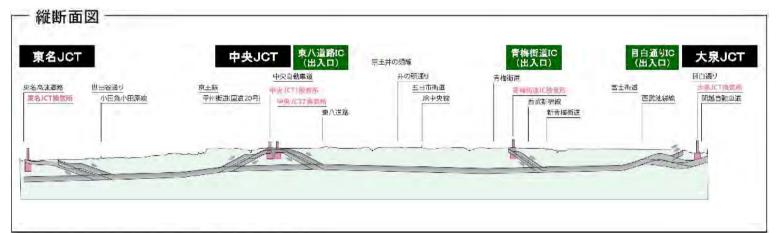
(平成19年4月6日 都市計画変更(高架→地下)) (平成27年3月6日 都市計画変更(地中拡幅部))

計画概要

延 長:約16km

高速道路との接続: 3 箇所

- · 東名 J C T (仮称)
- ·中央 J C T (仮称)
- ·大泉JCT


出入口: 3 箇所

- ・東八道路 I C (仮称)
- ・青梅街道 I C (仮称)
- ・目白通り I C (仮称)

構造形式:地下式

(41m以上の大深度に計画)

トンネル完成イメージ

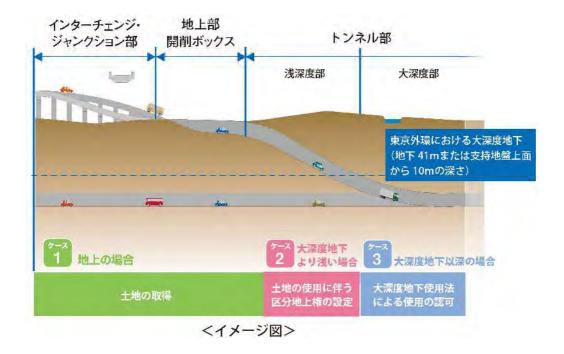
(JCT・ICは仮称。開通区間は除く)

大深度地下利用について

東京外かく環状道路(関越〜東名)は、「大深度地下の公共的使用に関する特別措置法」に基づく大深度地下の使用の認可を受け本線トンネルの大部分を地下40m以深の大深度地下としました。これにより、用地取得等を伴う箇所が地上部と大深度地下以浅部のみとなり、地域分断等による地上部の影響が少なくなります。

■大深度地下とは

・通常利用されない地下空間(①または②のいずれか深い方の空間)



東京外かく環状道路(関越〜東名)(以下「東京外環」という)の構造はイメージ図のとおり、主にインターチェンジ・ジャンクション部、地上部開削ボックス及びトンネル部に区分され、トンネル部はさらに浅深度部と大深度部に区分されます。

※浅深度部:トンネルの一部若しくは全ての構造が大深度地下より浅い箇所

(主としてイメージ図ケース2)

大深度部:トンネルの全ての構造が大深度地下以深になる箇所(イメージ図ケース3)

用地取得および埋蔵文化財調査の状況

【JCT・ICは仮称、開通区間は除く】

■用地取得区分イメージ

東名JCT

用地取得の状況

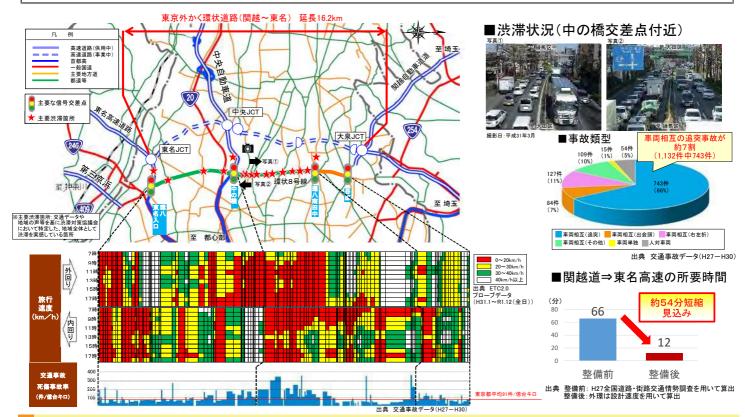
令和7年7月末

		東名JCT	中央JCT	青梅街道IC	大泉JCT	合計
	買収	99%	99%	40%	99%	94%
面積ベース	区分地上権	99%	97%	72%	100%	93%
	合計	99%	99%	55%	99%	94%
	買収	97%	99%	60%	99%	95%
件数 ベース	区分地上権	98%	95%	68%	100%	92%
	合計	97%	98%	65%	99%	93%

埋蔵文化財調査の状況

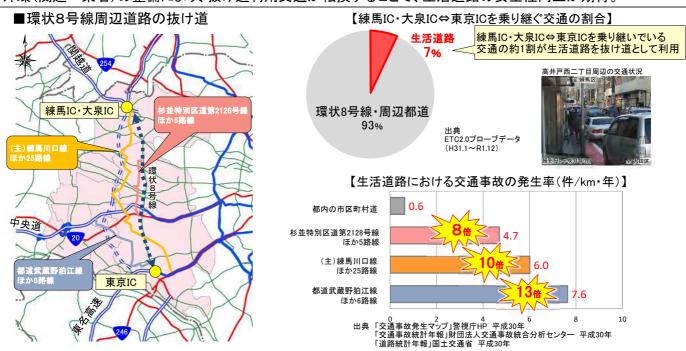
令和7年7月末

埋蔵文化財調査対象地のうち着工可能な面積の割合


※進捗率= 調査済み面積 調査対象面積

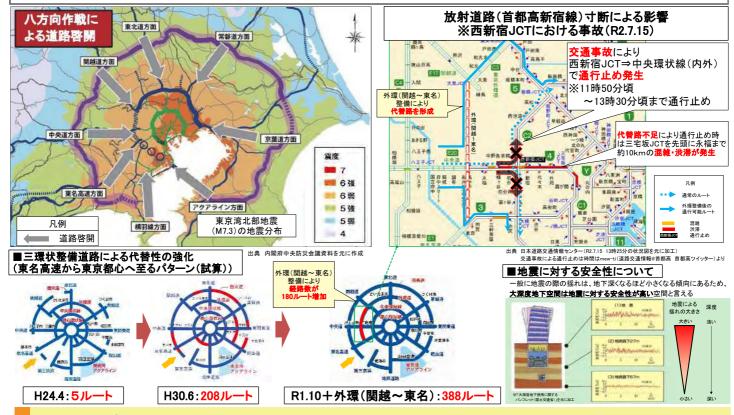
	東名JCT	中央JCT	青梅街道IC	大泉JCT	合計
進捗率	98%	100%	0%	100%	88%

東京外かく環状道路(関越~東名)沿線の課題


環状8号線の交通状況

- •外環(関越~東名)に並行する環状8号線では、高速道路との交差部周辺で交通渋滞が発生。
- ・事故類型は車両相互の追突事故が多く、全体の約7割。
- •外環(関越~東名)の整備により、交通の転換が図られ、交通混雑の緩和、交通事故の減少が期待。

環状8号線周辺の生活道路の交通状況

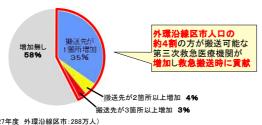

- ・関越道(練馬IC)及び外環(大泉IC)と東名高速(東京IC)を乗り継ぎしている交通の約1割が、環状8号線周辺の 生活道路を抜け道として利用。
- ▶環状8号線周辺の生活道路の交通事故件数は、都内の市区町村道と比較して8倍~13倍。
- 外環(関越~東名)の整備により、抜け道利用交通が転換することで、生活道路の安全性向上が期待。

東京外かく環状道路(関越~東名)の整備効果 1/2

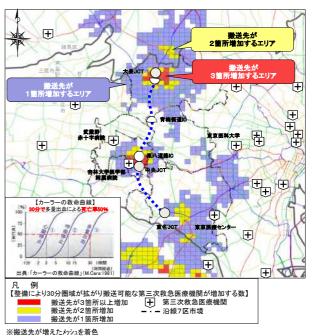
災害時等の代替路の確保

- 首都直下地震(M7クラスの地震)が今後30年以内に発生する確率は70%程度と推定。
- •道路管理者と関係機関は、首都直下地震に備え、都心に向けた八方向を優先啓開ルートに設定(八方向作戦)。
- ・リダンダンシーの強化により、災害だけでなく、事故などで放射道路が寸断された場合でも都心への経路が確保可能。

救急医療への支援

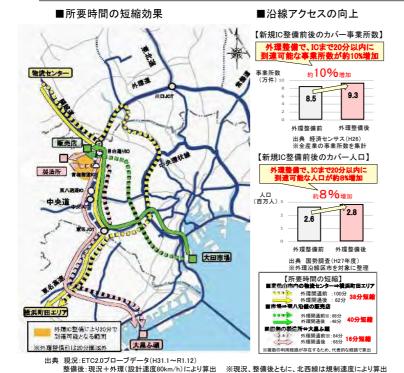

- 東京都は重症者の救急搬送人員が最も多く、搬送までに複数回照会を行う割合も高い。
- •外環(関越~東名)が整備されることで沿線区市人口の約4割の方が、多量出血による死亡率が50%となる30分で 搬送可能な第三次救急医療機関の数が増加。
- ・外環(関越~東名)が整備されることで救急搬送先の選択肢が増加し、沿線の高度救急医療を支援。
- ■沿線区市の救急搬送先の増加

【都道府県別重症者以上搬送人員ランキング 上位5位】



出典 救急搬送における医療機関の受入状況等実態調査の結果(総務省 R2年)

【外環沿線区市人口の救急搬送先の増加割合】


出典 人口:国勢調査(H27年度 外環沿線区市:288万人) 速度・現況はFTC2のプロープデータ(H31.1~R1.12)。整備後は現況+外環(設計速度80km/h)により算出 ※外環沿線区市(線馬区、杉並区、世田谷区、武蔵野市、三鷹市、調布市、狛江市)を対象とした集計 ※第三次教急医療機関:心筋梗塞、脳卒中、頭部外傷など一刻を争う重危篤教急患者の教命医療を担当する機関

東京外かく環状道路(関越~東名)の整備効果 2/2

企業活動の支援

•外環(関越~東名)整備による既存路線の渋滞緩和、所要時間の短縮、時間圏域の拡大などを通じて、物流コスト 削減、ドライバーの長時間労働緩和、物流品質の向上など企業活動を支援。

①広域的な企業活動の支援(所要時間の短縮等) 物流業 A社

東松山の配送センターから、関越道や首都高を利用して横浜町田 エリアへ荷物を配送している。

外環(関越~東名)整備により、都心の中央環状線を通過すること なく、配送できるため、時間短縮や安全性向上に期待している。

②沿線企業の企業活動の支援(物流品質の向上)

・花の流通を行っており、鮮度(物流品質)が重要 となるが運送上の都合によっては時間が読めな <u>い</u>こともある。

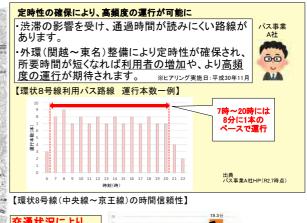
・外環が整備されることで、大田市場より、環八沿 線に複数立地する販売店に輸送する際、輸送時 間の短縮や安定化が図られ、品質を維持しやす くなることが期待される。

※ヒアリング実施日:令和2年7月

③沿線企業の企業活動の支援(ドライバー負荷軽減等)

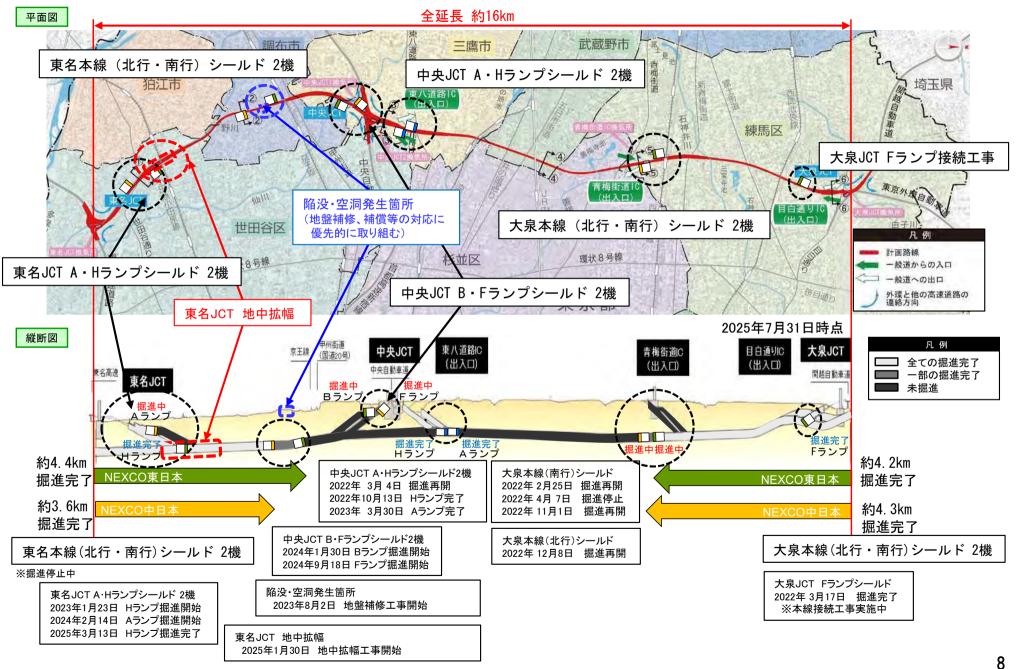
製品・部品の輸出入のため、田無の製造所と 大黒ふ頭のバックヤード間で、運送を行っている。 外環(関越~東名)整備により、ドライバーの負 荷が軽減することを期待している。

」 画像出典:公式HP ※ヒアリング実施日: 令和2年7月

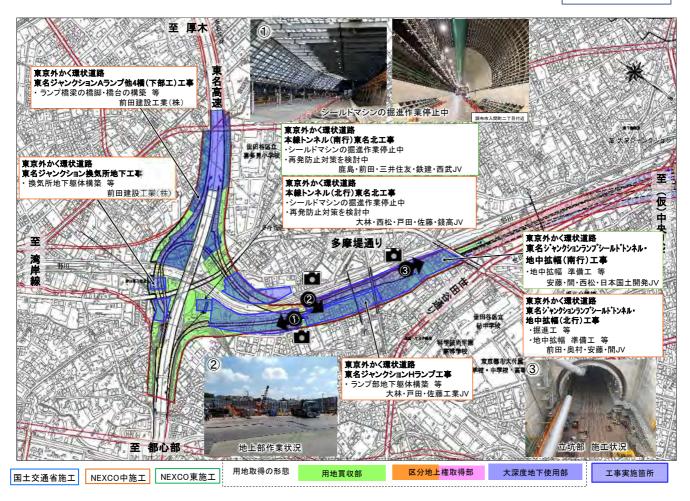

バスの定時性向上

- •環状8号線は東西に延びる複数の鉄道路線の主要駅間を南北に結ぶバスルートとして利用。
- •環状8号線には主要渋滞箇所が複数存在しており、所要時間(最短・最長)の差にバラツキがあり、定時運行に懸
- ・外環(関越~東名)が整備されることで、環状8号線の混雑が緩和され、バスの定時性向上が期待。

■環状8号線周辺のバスルート


■企業の声

ETC2.0ブローブデータ(H31.1~R1.12 (全日 展12時間)) 所要時間は東電鉄座支社前交差点~上高井戸一丁目文差点間を対象に整理 最短:最長所要時間:特異値(所要時間の上位10%、下位10%)を除いた所要時間のバラツキ


東京外かく環状道路(関越~東名) 現在の状況

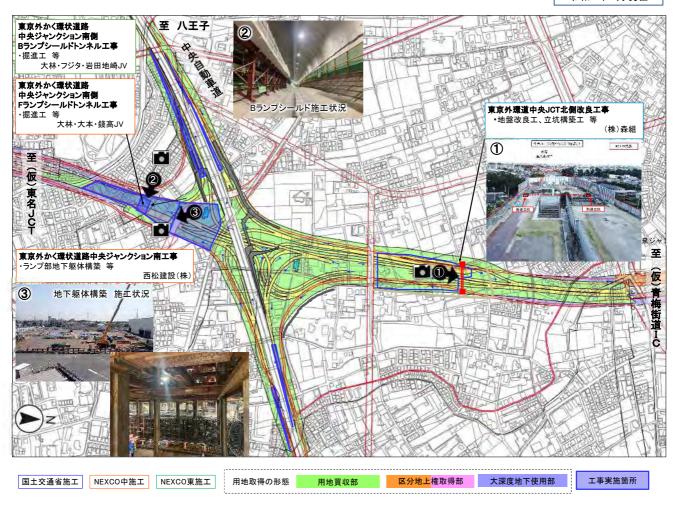
現在の状況【東名JCT】

工事の状況

令和7年7月現在

空撮写真

[令和3年4月時点]



[令和7年7月時点]

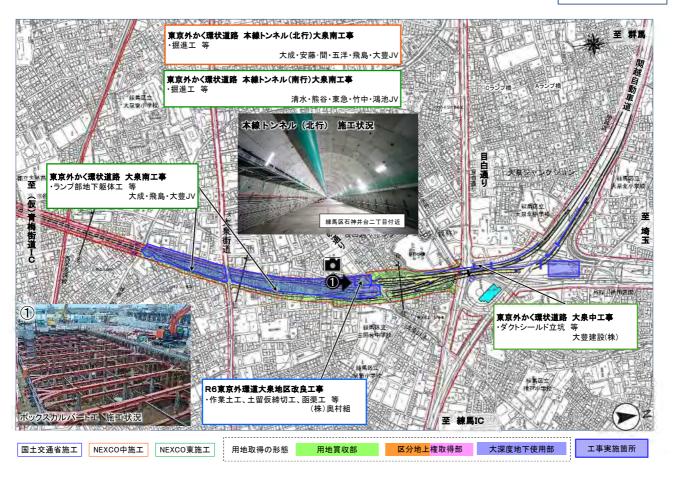
現在の状況【中央JCT】

工事の状況

令和7年7月現在

空撮写真

「令和7年7月時点]



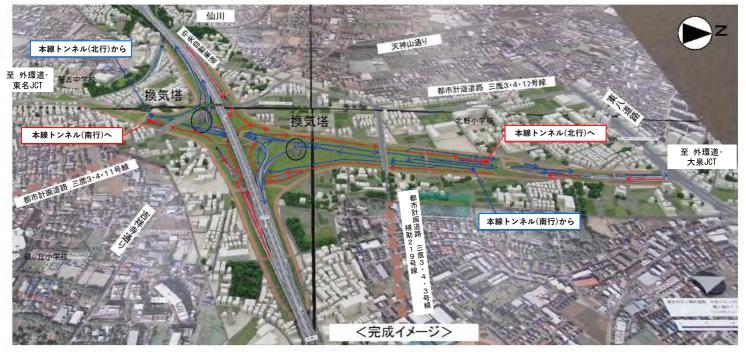
[令和7年7月時点]

現在の状況【大泉JCT】

工事の状況

令和7年7月現在

空撮写真

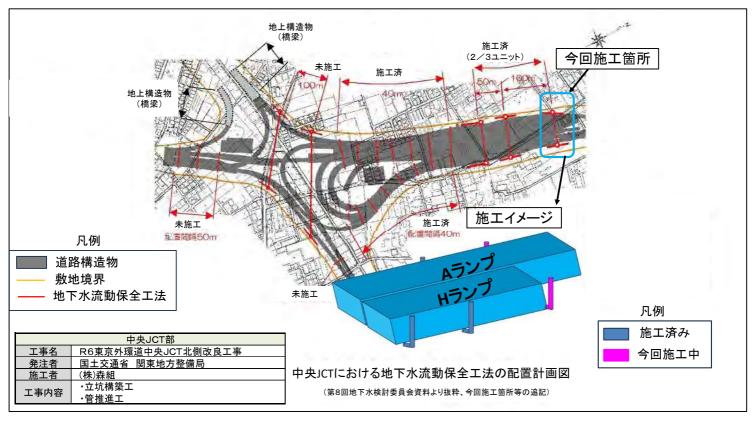


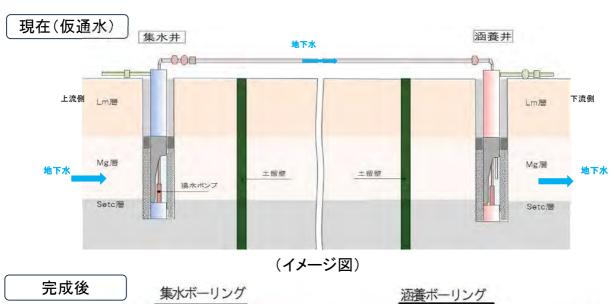
[令和7年7月時点]

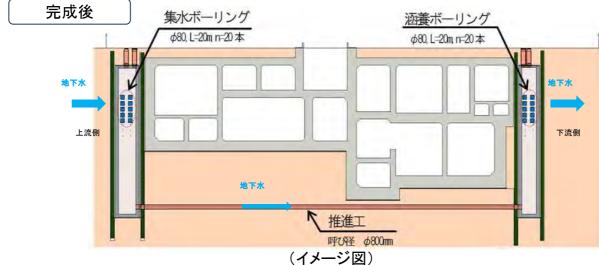
[令和7年7月時点]

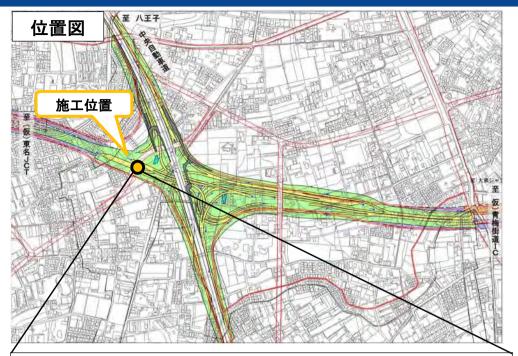

中央JCT部の工事【完成イメージ】

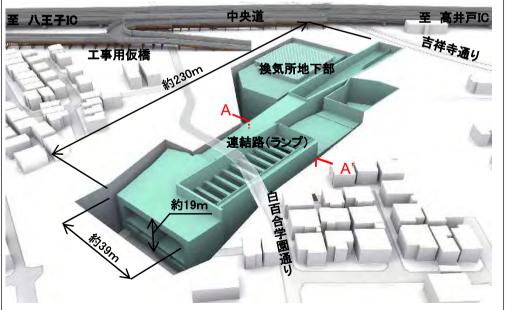
至 中央道· 調布IC

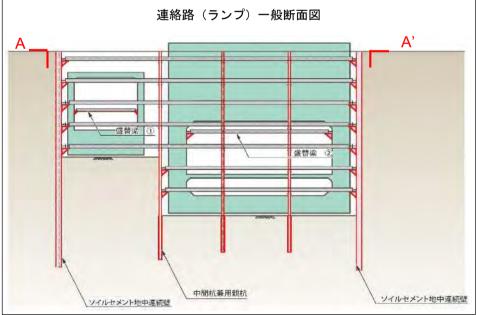



至 中央道· 高井戸IC




中央JCT北側改良工事の概要





中央JCT部の工事【ランプボックス、地下構造物】

	中央JCT部					
工事名称 東京外かく環状道路 中央ジャンクション南工事						
発 注 者	中日本高速道路(株) 東京支社					
施工者	西松建設(株) 関東土木支社					
工事内容	・開削によるランプボックスの構築(開削工) ・維持管理用の電気室の構築(地下構造物工) ・地下水流動保全工					

現場写真【中央JCT関連工事】

中央JCT北側開削トンネル施工状況 (令和5年5月16日)

中央道へアクセスする工事用仮橋設置状況 (外景) (令和元年6月17日)

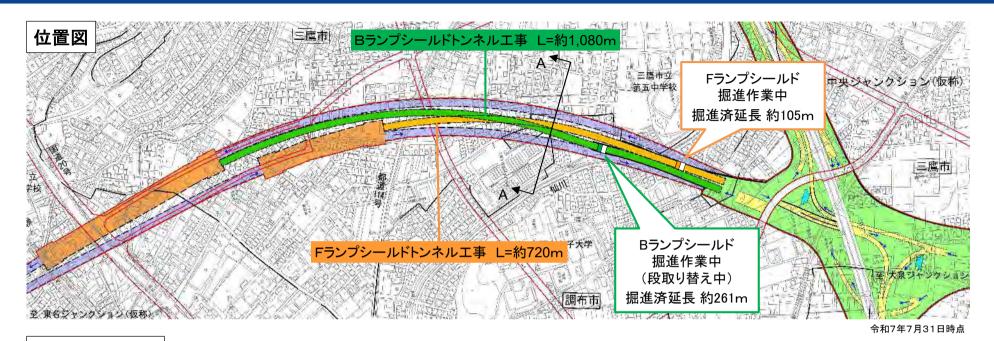
中央JCT南側ランプシールド防音設備設置状況 (令和4年9月27日)

中央 J C T 北側開削トンネル施工状況 (令和5年5月16日)

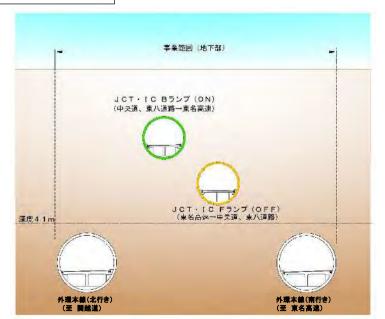
中央JCT上り線ONランプ工事用仮橋の状況 (令和5年5月18日)

中央JCT南側換気所施工状況 (令和7年7月24日)

中央 J C T 北側開削トンネル施工状況 (令和5年5月16日)



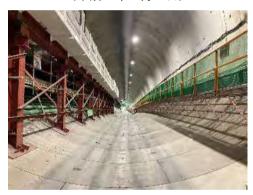
中央JCT北側開削トンネル施工状況 (令和5年2月1日)



中央JCT南側開削トンネル施工状況(地上部) (令和7年4月17日)

中央JCT B・Fランプシールドトンネル工事の概要

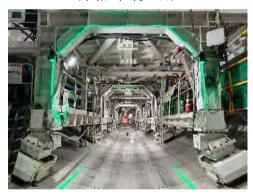
断面図(A-A)


	B ランプシールドトンネル						
工事名称	東京外かく環状道路						
	中央ジャンクション南側 B ランプシールドトンネル工事						
発 注 者	東日本高速道路(株) 関東支社						
施 工 者 大林組・フジタ・岩田地崎建設 特定建設工事共同企業体							
工事内容	・泥土圧シールド						
	シールド機外径φ約 12m、セグメント外径φ11.5m						
	•延長約 1,080m						
ランプシールド区間	東京都三鷹市北野~中原						

	F ランプシールドトンネル
工事名称	東京外かく環状道路
	中央ジャンクション南側 Fランプシールドトンネル工事
発 注 者	中日本高速道路(株) 東京支社
施工者	大林組・大本組・錢高組 特定建設工事共同企業体
工事内容	・泥土圧シールド
	シールド機外径φ約 12m、セグメント外径φ11.5m
	·延長約 720m
ランプシールド区間	東京都三鷹市中原~北野

現場写真【中央JCT Bランプシールドトンネル工事】

シールドマシンの組立状況 (平成30年12月11日)


坑内の状況 (令和7年5月30日)

ベルトコンベアの状況 (令和7年7月30日)

シールドマシン発進前の状況 (令和5年1月20日)

シールドマシン後方の状況 (令和7年5月30日)

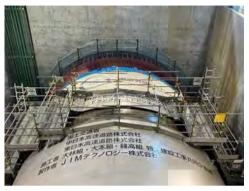
土砂ピットヤードの状況 (令和7年7月30日)

セグメントストックヤードの状況 (令和7年4月11日)

防音ハウス内の状況 (令和7年7月30日)

土砂ピットヤード内部の状況 (令和7年7月30日)

現場写真【中央JCT Fランプシールドトンネル工事】


シールドマシンの組立状況 (平成30年12月19日)

坑内の状況 (令和7年7月30日)

ベルトコンベアの状況 (令和7年7月30日)

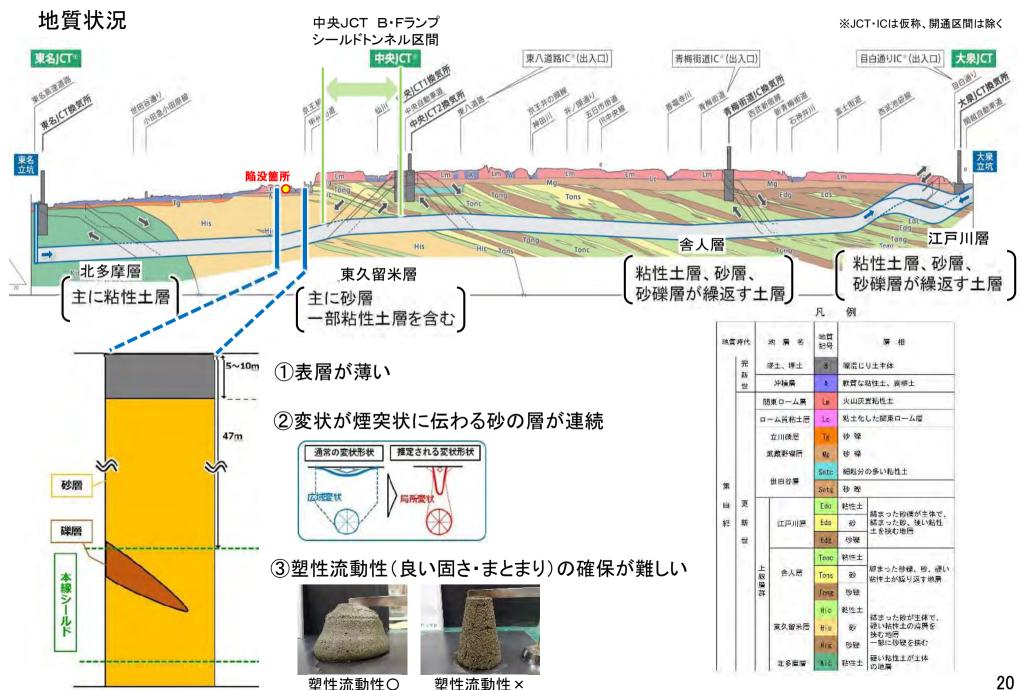
シールドマシン発進前の状況 (令和5年1月20日)

シールドマシン後方の状況 (令和7年7月30日)

土砂ピットヤードの状況 (令和7年7月30日)

セグメントストックヤードの状況 (令和7年7月30日)

防音ハウス内の状況 (令和7年7月30日)



土砂ピットヤード内部の状況 (令和7年7月30日)

シールドマシンの動画

陥没箇所周辺の地盤

塑性流動性(良い固さ・まとまり)

塑性流動性あり

- ・良い固さ
- -まとまり

塑性流動性なし

- 固すぎる (柔らかすぎてもだめ)
- まとまりがない

陥没・空洞の原因

〈事故発生箇所付近での夜間停止〉

オヤンバーカッターコンベヤー

〈翌朝の工事〉

- ○<u>夜間の停止中</u>に削った土と添加材が分離
- 〇下部に土砂がたまり、**土が締め固まってしまった**
- ○翌朝、カッターが回らなくなってしまった

- ○回らなくなったカッターを回すため、特別な作業を 行った時に、地山の土が過剰に入り込んでしまい、 その後の掘進において、<u>土を取り込みすぎた</u>
- 〇シールドマシン上部にゆるみが発生
- 〇上方に煙突状に伝わり陥没・空洞が発生

事故を踏まえた対応

■陥没・空洞の原因

〈事故発生箇所付近での夜間停止〉

- ○夜間の停止中に削った土と添加材が分離
- 〇下部に土砂がたまり、**土が締め固まってしまった**
- ○翌朝、カッターが回らなくなってしまった

■対応

对応 I

○掘進停止中も、土の締め固まりを 生じさせません

〈翌朝の工事〉

- ○回らなくなったカッターを回すため、特別な作業を 行った時に、地山の土が過剰に入り込んでしまい、 その後の掘進において、土を取り込みすぎた
- 〇シールドマシン上部にゆるみが発生
- 〇上方に伝わり陥没・空洞が発生

Ⅱ 杰恢

〇取り込んだ土の量を 丁寧に把握します

対応皿 〇お住まいの皆さまの安全・安心を高めます

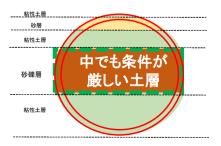
- ・振動・騒音をできるだけ低減します ・ 積極的に情報提供を行います
- 地表面などのモニタリングを強化します
- 緊急時にも安心できる対応を整えます

ポイント

様々な条件でも土の締め固まりを生じさせない添加材を確認

原因と対応

- ○夜間の停止中に削った土と添加材が分離
- ○下部に土砂がたまり、**土が締め固まってしまった**
- ○翌朝、カッターが回らなくなってしまった


- ■停止中も土が締め固まらない添加材を実験で確認
- ■実際には出現しがたい厳しい条件でも実験

具体的な対応

- ○実際の掘削断面で最も条件の厳しい断面と、 その中でも条件が厳しい土層が全断面に現れた断面 で添加材と土を配合する実験
- ○添加材と混ぜた土が長期停止でも分離しないか確認
- ○これらを複数の添加材で実験し、適した添加材を確認

(実際の掘削断面で最も条件の厳しい断面)

(中でも条件が厳しい土層が 全断面に現れた想定断面)

全断面に 出現したと 想定

実験の様子

○厳しい条件も含め、複数の添加材を用いることで

締め固まりが起こらないことを確認

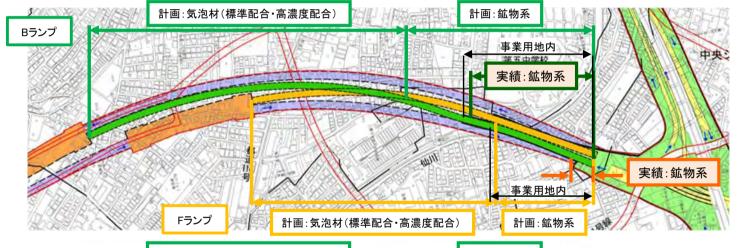
〇(塑性流動性あり)

〇(塑性流動性あり)

まとめ

- ○いずれの条件でも締め固まりが起こらない添加材を確認
- ○これら複数の添加材を常に使用可能な状態とする
- ○課題発生時の対応を事前に取り決め

ポイント

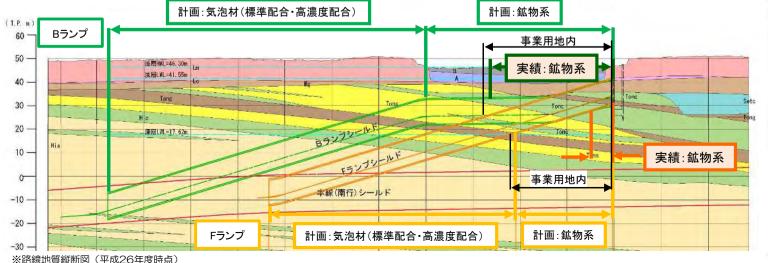

掘進地盤に適した添加材の選定等をするために、以下4種類の添加材で、事前配合試験を行っています。

	1	r	ı	
	CASE-1	CASE-2	CASE-3	CASE-4
添加材 種別	気泡材(標準配合)	気泡材(高濃度配合)	気泡材+鉱物系 (気泡材の助材として使用)	鉱物系 (単体で使用)
外観			+	
特徴	・標準的に使用を予定している 気泡材	・標準的な気泡材に対し、強度 の高い気泡を得ることを目的と して、起泡剤溶液の配合を変え た気泡材		・鉱物系を主材として添加
種類	・陰イオン系界面活性剤 (家庭用洗剤等と同じ成分)	・陰イオン系界面活性剤 (家庭用洗剤等と同じ成分)	気泡材と鉱物系を混ぜ合わせたもの。	・モンモリロナイト粘土混合物 (粘土の一種。高い粘着性や吸 水性を利用して、土木工事のほ か陶磁器製造、農薬、食品添加 物など様々な用途に使用される もの)

実施状況

- 中央JCT B・Fランプシールドトンネル工事は、現在まで鉱物系の添加材を使用して土の締め固めを生じることなく、掘進を行っています。
- カッター回転不能となる事象は発生していません。
- なお、中央JCT Bランプシールドトンネル工事について、今後掘進を 行う事業用地外の初期区間については、これまでの掘進実績を踏まえ 鉱物系を使用した掘進を継続します。

<添加材使用計画・実績図>

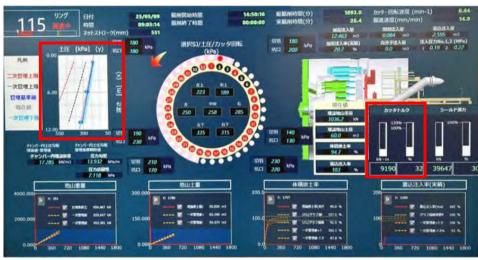


鉱物系添加材注入ポンプ

鉱物系添加材用泥水タンク

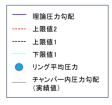
				凡	例		
地質時代		地層名		地質 記号		層 相	
	完	游士、堆土 沖積層		В	徽混じり土主体		
	新世			A	軟質な粘性土、胸植土		
		関東ローム層		Lm	火山灰	火山灰質粘性土	
		п.	ローム資粘土層 立川機圏		料土化した関東ローム層		
					砂礫		
	更	武蔵野礫原		Mg	砂礫		
				Setc	細粒分の多い粘性土		
第		世田谷曆		Sets	砂礫		
PH.		新	苦人后	Ede	粘性土	綿まった砂礫が主体で、	
紀				Eds	R)	締まった砂、硬い粘性 - 土を挟む地居	
				Edg	砂礫		
				Tonc	粘性土		
				Tons	砂	縮まった砂礫、砂、硬い 粘性土が繰り返す地層	
				Tonz	砂缝		
			東久留米層	Hic	粒性土	締まった砂が主体で、	
				His	砂	硬い粘性土の溶層を 挟む地層	
				Hig	砂礫	一部に砂礫を挟む	
			北多摩層	Nic	粘性土	硬い粘性土が主体 の地層	

中央JCT B・Fランプシールドトンネル工事の塑性流動性とチャンバー内圧力のモニタリングと対応


実施状況

カッタートルク※1、チャンバー内圧力勾配※2等の状況をリアルタイムで監視する設備を搭載してい

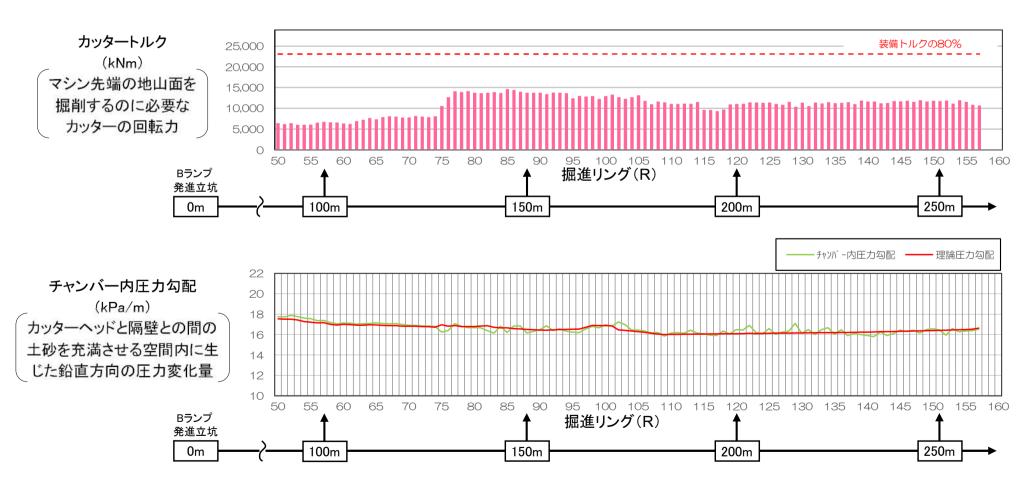
圧力計位置(参考例)


チャンバー内圧力勾配の確認

監視モニターによるリアルタイム監視の例

チャンバー内圧力勾配の リアルタイム監視状況の例

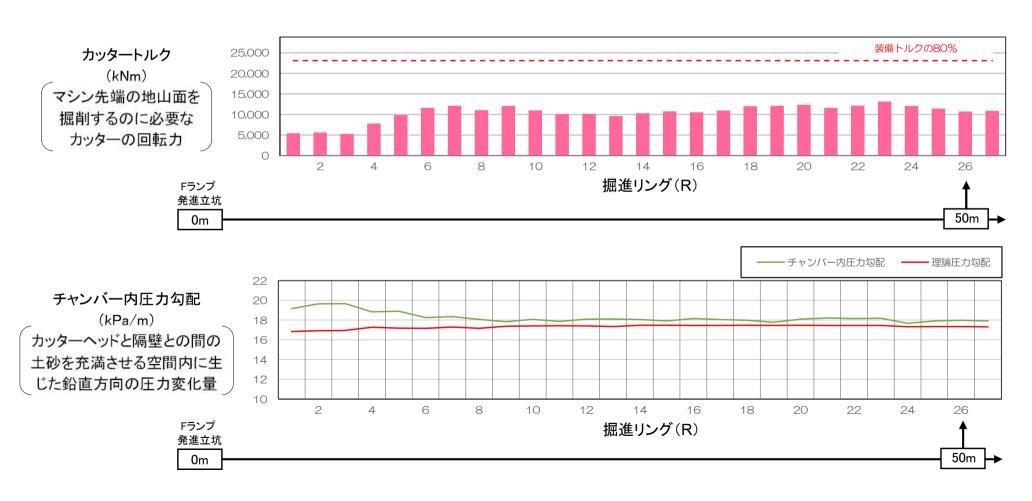
カッタートルクのリアルタイム監視状況の例


※1 カッタートルク

:マシン先端の地山面を掘削するのに必要なカッターの回転力 ※2 チャンバー内圧力勾配 :カッターヘッドと隔壁との間の土砂を充満させる空間内に生じ た鉛直方向の圧力変化量

中央JCT Bランプシールドトンネル工事の施工データ(塑性流動性のモニタリング)

実施状況


- カッタートルクや新たな確認項目であるチャンバー内圧力勾配に異常がないことをリアルタイムで確認しています。
- 平日夜間・休日停止後のカッター起動も円滑に行われていることを確認しています。

中央JCT Fランプシールドトンネル工事の施工データ(塑性流動性のモニタリング)

実施状況

- カッタートルクや新たな確認項目であるチャンバー内圧力勾配に異常がないことをリアルタイムで確認しています。
- 平日夜間・休日停止後のカッター起動も円滑に行われていることを確認しています。

中央JCT Bランプシールドトンネル工事の排土性状確認結果 (手触、目視、ミニスランプ試験、粒度分布)

実施状況

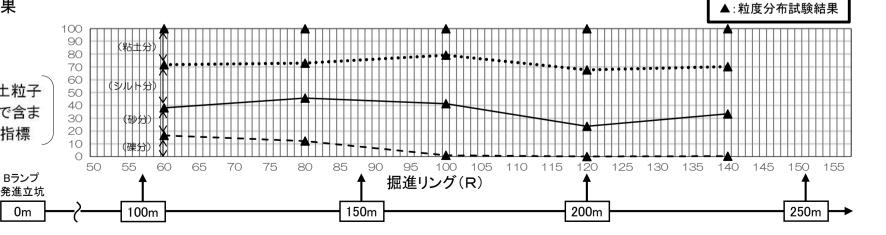
- モニタリングデータや排土性状確認結果より、排土性状の大きな変化は確認されていません。
- 掘削土を1日2回の頻度で採取し、手触、目視、ミニスランプ試験を行い、排土性状の変化を確認しています。
- 20リングに1回の頻度を基本として掘削土の粒度分布試験を実施し、細粒分や礫分の比率などを 確認しています。

■手触・目視・ミニスランプ

80R 手触·目視

80R ミニスランプ

140R 手触·目視



140R ミニスランプ

■粒度分布試験結果

(%) どのような大きさの土粒子 が、どのような割合で含ま れているかを示す指標

粒度分布

中央JCT Fランプシールドトンネル工事の排土性状確認結果 (手触、目視、ミニスランプ試験、粒度分布)

実施状況

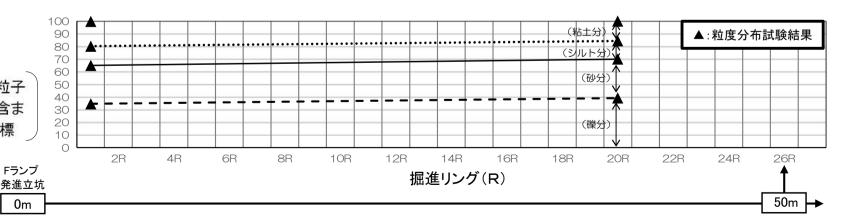
- モニタリングデータや排土性状確認結果より、排土性状の大きな変化は確認されていません。
- 掘削土を1日2回の頻度で採取し、手触、目視、ミニスランプ試験を行い、排土性状の変化を確認しています。
- 20リングに1回の頻度を基本として掘削土の粒度分布試験を実施し、細粒分や礫分の比率などを確認しています。

■手触・目視・ミニスランプ

8R 手触·目視

8R ミニスランプ

24R 手触·目視

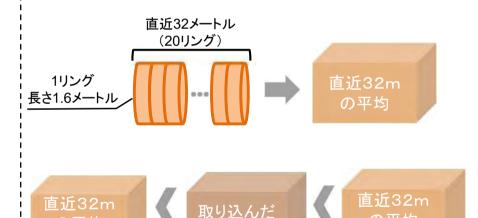


24R ミニスランプ

■粒度分布試験結果

粒度分布 (%)

どのような大きさの土粒子 が、どのような割合で含ま れているかを示す指標


対応 | 1:取り込んだ土の量を丁寧に把握します

ポイント

過剰な土の取り込みの兆候を早期に把握し、過剰な土の取り込みを生じさせない

原因と対応

- ○従来の管理方法では、異常の兆候が確認できなかった
 - く従来の管理方法>
 - 〇直近32mの平均取り込み量と比較して管理
 - 〇土の取り込み量の管理値は±10%に設定

土の量

+10%

- ■土の取り込み量の管理値を厳格化
- ■土の取り込み量の管理項目を追加
- ■工事体制の強化

-10%

管理値の厳格化

〇陥没発生箇所の実績から、管理値を±10%から ±7.5%に厳格化

直近32m の平均 <u>-7.5%</u> 取り込んだ 土の量

直近32m の平均 十7.5%

管理項目の追加

○1リング毎に、取り込んだ土の重さから計算した体積 と掘進部分の体積を比較 _ _ 1リング

■体積の比較(排土率)

取り込んだ体積 (重さ/単位体積重量) 掘進部分 (マシン面積

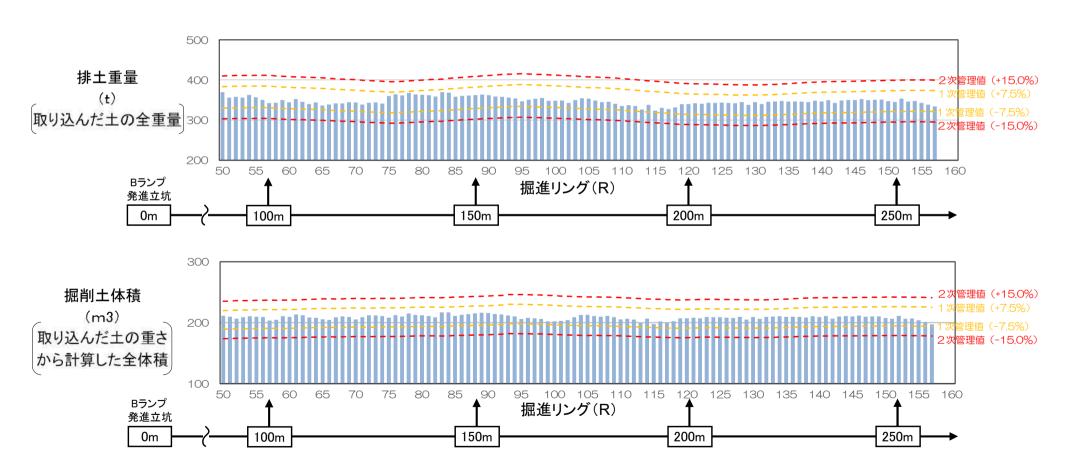
掘進部分の体積 (マシン面積×掘進距離)

< 100(%)

100%超過の場合・・・土の取り込みが多い傾向 100%未満の場合・・・土の取り込みが少ない傾向

○添加材が地山へ浸透した場合も考慮

工事体制の強化

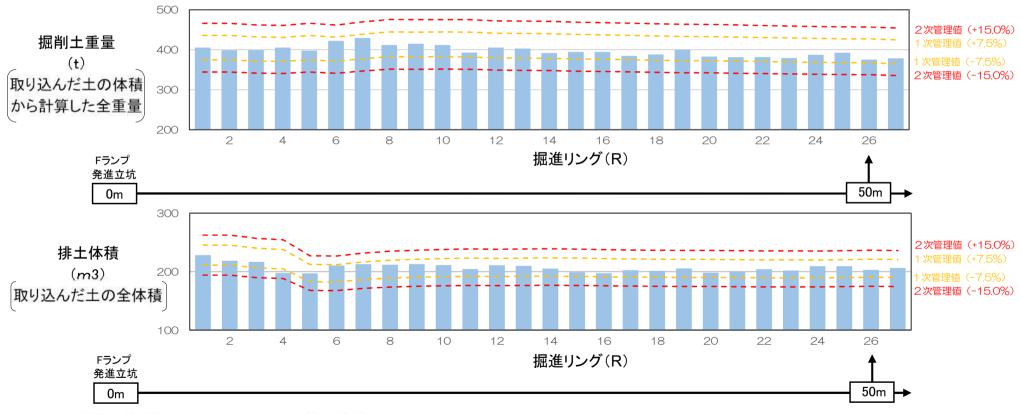

- ○改善が見られない場合は掘進工事を一時停止
- ○課題発生時の対応を事前に取り決め

対応 | 1:取り込んだ土の量を丁寧に把握します

中央JCT Bランプシールドトンネルエ事の施工データ(排土重量・掘削土体積・排土率)

実施状況

- 管理値を±10%から±7.5%に厳格化した排土重量、掘削土体積、新たな管理値として追加した排 土率を用いて、排土量管理を実施しています。
- 排土重量、掘削土体積、排土率を確認し、掘進における管理フロー(切羽の安定管理、掘削土量)に基づき、適切に施工が行われていることを確認しています。
- 排土重量、掘削土体積は1次管理値の範囲内であることを確認しています。

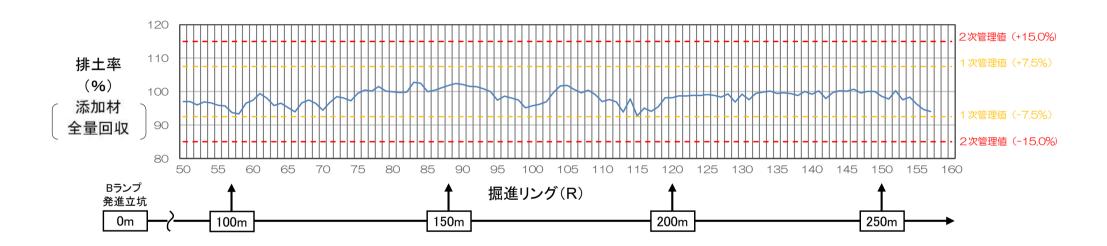


対応 | 1:取り込んだ土の量を丁寧に把握します

中央JCT Fランプシールドトンネル工事の施工データ(掘削土重量・排土体積・排土率)

実施状況

- 管理値を±10%から±7.5%に厳格化した掘削土重量、排土体積、新たな管理値として追加した排 土率を用いて、排土量管理を実施しています。
- 掘削土重量、排土体積、排土率を確認し、掘進における管理フロー(切羽の安定管理、掘削土量)に基づき、適切に施工が行われていることを確認しています。
- 掘削土重量、排土体積は概ね1次管理値の範囲内であることを確認しており、1次管理値を超過した際は、各施工データの確認を行い、異常の兆候がないことを確認し、掘進を継続しています。



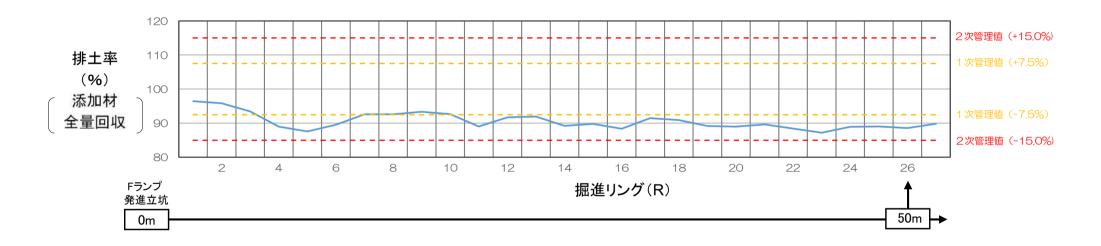
- ※1次管理値を超過した区間について(排土体積:4R)
 - ・砂・礫分が比較的多い地盤であったため、掘進する際の圧力により、地山に存在する間隙水等が掘削断面の外に押し出されたことなどで、排土体積が小さくなったものと考えられます。

中央JCT Bランプシールドトンネル工事の施工データ(掘削土重量・排土体積・排土率)

実施状況

- 体積の比較(排土率)は、1次管理値の範囲で収まっていることを確認しています。
- 掘進における管理フロー(切羽の安定管理、掘削土量)に基づき、適切に施工が行われていることを確認しています。

<排土率>


取り込んだ体積 : 掘進部分の体積 × 100(%) (重さ/単位体積重量) (マシン面積×掘進距離)

100%超過の場合・・・土の取り込みが多い傾向 100%未満の場合・・・土の取り込みが少ない傾向

中央JCT Fランプシールドトンネル工事の施工データ(掘削土重量・排土体積・排土率)

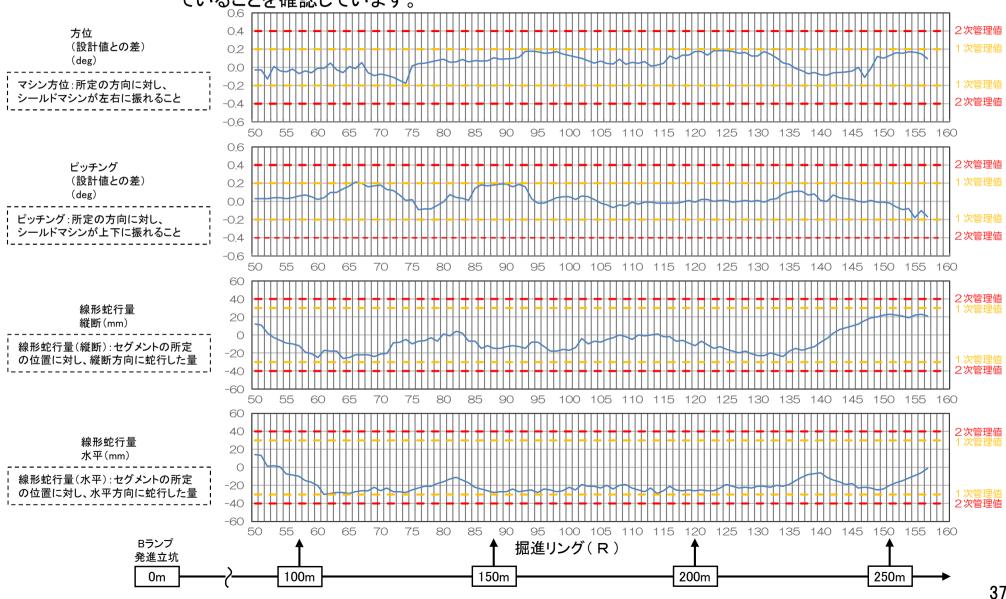
実施状況

- 掘進における管理フロー(切羽の安定管理、掘削土量)に基づき、適切に施工が行われていることを確認しています。
- 排土率は、下限側の1次管理値を超過する傾向が確認されたことから、各施工データの確認を行い、異常の兆候がないことを確認し、掘進を継続しています。

※1次管理値を超過した区間について(4~6R及び11~27R)

・砂・礫分が比較的多い地盤であったため、掘進する際の圧力により、地山に存在する間隙水等が掘削断面の外に押し出されたことなどで、 排土率が低くなったものと考えられます。

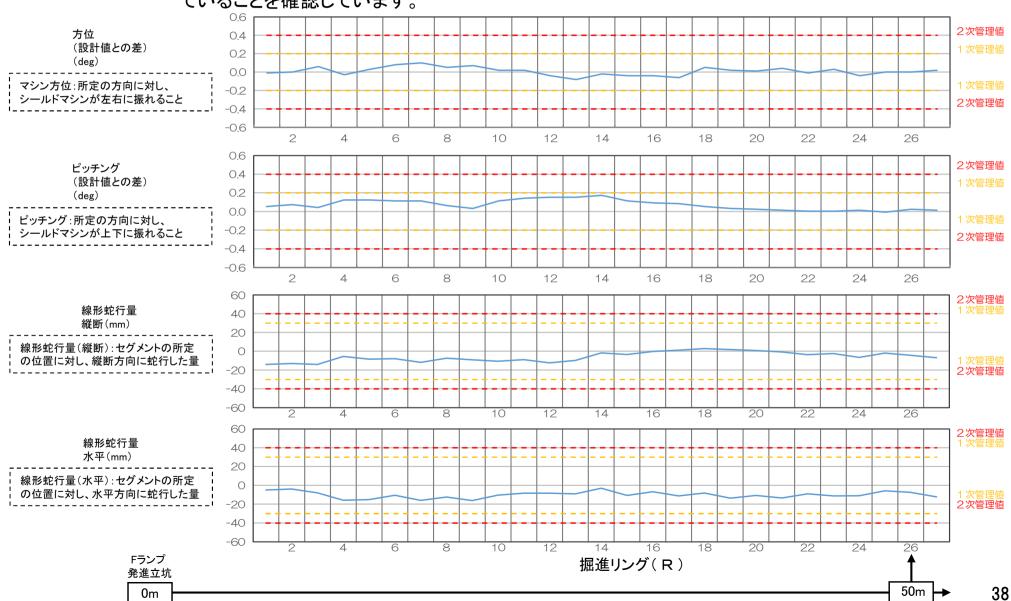
<排土率>


取り込んだ体積 : 掘進部分の体積 × 100(%) (重さ/単位体積重量) (マシン面積×掘進距離)

100%超過の場合・・・土の取り込みが多い傾向 100%未満の場合・・・土の取り込みが少ない傾向

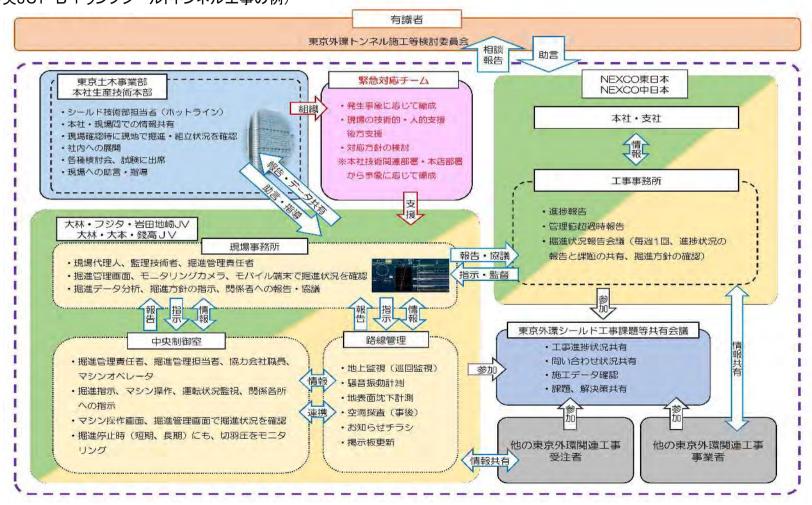
中央JCT Bランプシールドトンネル工事の施工データ(マシン制御等)

実施状況


● マシン方向制御の掘進管理項目(方位、ピッチング)及び線形蛇行量は、管理値の範囲で収まっていることを確認しています。

中央JCT Fランプシールドトンネル工事の施工データ(マシン制御等)

実施状況

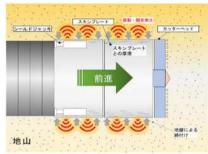

● マシン方向制御の掘進管理項目(方位、ピッチング)及び線形蛇行量は、管理値の範囲で収まっていることを確認しています。

中央JCT B・Fランプシールドトンネル工事の工事体制強化

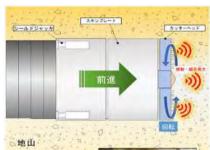
実施状況

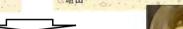
- 関係者への日々の掘進状況の定時報告等の情報共有を確実に実施しています。
- 緊急時には同様にすみやかに情報共有がなされる体制を構築しています。
- ■掘進モニタリング体制 (中央JCT B・Fランプシールドトンネル工事の例)

※カッター回転不能(閉塞)時の対応


安全のために必要な措置を実施した上で、掘進を一時停止し、緊急対策チームを編成した上で、原因究明と地表面に影響を与えない対策を十分に検討する。 また、閉塞解除後の地盤状況を確認するために、必要なボーリング調査等を実施していきます。

ポイント


<u>・振動・騒音を低減</u> <u>・モニタリングを強化</u> ・情報提供を強化・緊急時対応を整備


振動・騒音をできるだけ低減

(マシンと地盤の摩擦)

(前方の地盤掘削)

■マシンと地盤の間に滑剤を投入

地表面のモニタリングを強化

- ○振動・騒音を日々計測し表示
- ○掘進状況等を案内するガードマンを配置
- ○3D計測など**地表面計測方法**
- 頻度を増加
- 〇巡回員等により24時間監視
- ○掘進前後で路面下に空洞がないかを調査

3D点群データ調査

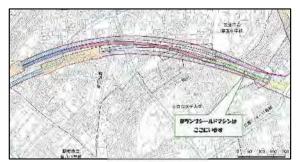
巡回員

(振動・騒音の表示)

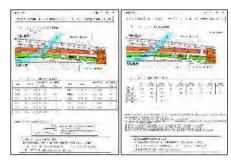
(滑剤)

路面下空洞探查車

情報の提供


- 〇お知らせチラシの配布頻度を増加 (1ヵ月前、通過前後)
- 〇ホームページと掲示板で

工事情報や計測結果を公開


- 〇お知らせチラシ等とあわせて計測結果を配布
- ○相談窓口とフリーダイヤルを開設

(掲示板イメージ)

掘進状況公表例

モニタリング情報公表例

緊急時の対応をあらかじめ準備

- ○掘進を一時停止する対応を予め整理
- ○「安全・安心確保の取組み」を見直し、

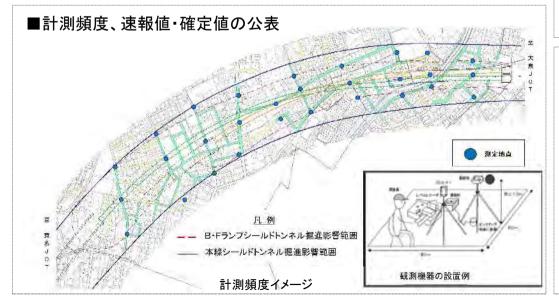
連絡体制や情報提供の流れを確認

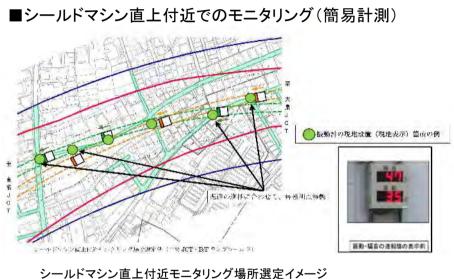
- 〇振動・騒音を特に気にされる方に
 - 一時滞在場所を提供
- ○お知らせチラシにおいて、一時避難先となる

オープンスペースを周知

(「トンネルエ事の安全・安心 確保の取組み」パンフレット)

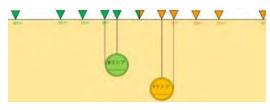
中央JCT B·Fランプシールドトンネル工事の対応状況(振動・騒音)


実施状況

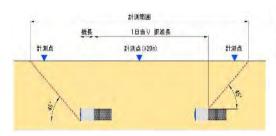

- 振動・騒音計測および振動・騒音の緩和に向けた対応を適切に実施しています。
- スキンプレートと地山との間に滑剤をいつでも充填できる設備を搭載
- 掘進速度の調整

滑剤充填設備(中央JCT Bランプシールドトンネル工事の実績)

■計測箇所付近に状況をご案内するガードマンを配置

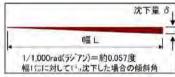


ガードマンの配置イメージ


中央JCT B·Fランプシールドトンネル工事での対応状況(地表面変位等)

実施状況

- 地表面計測やMMS(3D点群調査)、巡回監視などを適切に実施しています。
- ■シールド掘進に伴う地表面計測



横断方向 計測範囲

縦断方向 計測範囲

地表面変状は掘進前後の最大 地表面傾斜角(1,000分の 1rad以下)により管理する。

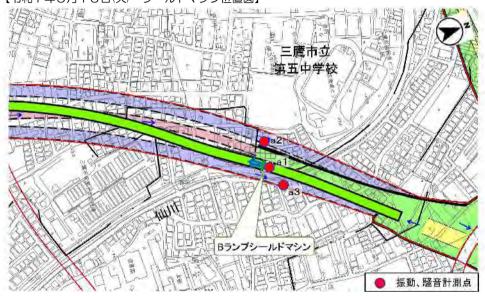
掲示板での情報提供イメージ

- ・地表面傾斜角1,000分の1rad以下とは家屋に影響を与えない 地盤変位の目安である。
- 「建築学会小規模建築物基礎設計の手引き1998年」の記載を 参考に設定。

■MMS(3D点群調査)

■巡回監視

■GNSS・合成開口レーダー



中央JCT Bランプシールドトンネル工事の対応状況(振動・騒音)

実施状況

- a1地点(シールドマシン直上付近)で停止中と掘進中で騒音レベルの上昇傾向が確認されましたが、 規制基準値内でした。
- 振動レベル及び低周波レベルについては停止中と掘進中で明確な差異は確認されませんでした。

【令和7年5月13日(火) シールドマシン位置図】

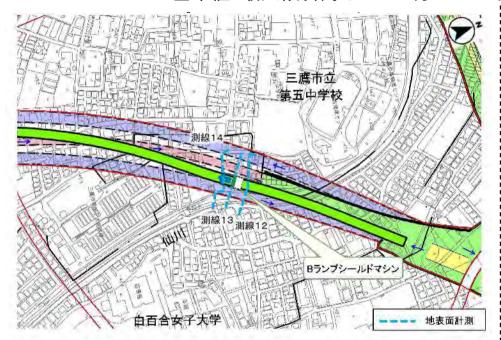
【令和7年5月13日(火)7:30~17:00 振動·騒音計測結果(確定値)】

	a1		a2		аЗ	
	停止中 最大	掘進中 最大	停止中 最大	掘進中 最大	停止中 最大	掘進中 最大
振動レベル L _{tu} (dB)	25	34	29	34	34	36
騒音レベル L ₄₅ (dB)	43	54	49	57	55	56
低周波レベル L _{so} (dB)	74	71				
低周波レベル Log(dB)	76	76				

- *振動レベル、騒音レベル、低周波レベルの測定はシールドマシン通過時にその直上付近で実施しています。計測点はシールドマシン中心および影響範囲端部を基本とし、事業用地や公道などで実施しています。
- *上表は、特異値(例:大型車両通過に伴う振動、緊急車両サイレンなど)を除外した数値を示しています。

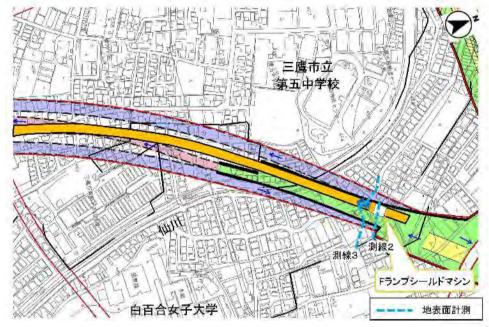
【振動レベル L10】振動レベルをある時間測定したとき、全測定値の大きい方から 10%目の値を L10と表します。

【騒音レベル LA5】騒音レベルをある時間測定したとき、全測定値の大きい方から5%目の値を LA5と表します。


【低周波レベル L50】1~80Hz の周波数範囲内をある時間測定したとき、全測定値の中央値を L50と表します

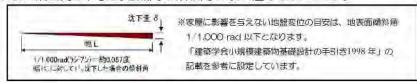
【低周波レベル LG5】1~20Hz の周波数範囲内をある時間測定したとき、全測定値の大きい方から 5%目の値を LG5と表します

中央JCT B·Fランプシールドトンネル工事の対応状況(地表面変位)


実施状況

● 掘進前後の地表面変位は基準値以下であることを確認しています。 基準値:最大傾斜角は1000分の1rad以下※

【令和7年6月24日(火) 地表面変位計測結果】


測線	基準日	最大傾斜角 (rad)	最大鉛直変位 (mm)
測線12	令和7年 5月 9日	0.2/1,000	+2
測線13	令和7年 5月15日	0.2/1,000	+2
測線14	令和7年 5月21日	0.1/1,000	-1

【令和7年6月24日(火) 地表面変位計測結果】

測線	基準日	最大傾斜角 (rad)	最大鉛直変位 (mm)
測線2	令和6年8月28日	0.2/1,000	-3
測線3	令和6年9月19日	0.2/1,000	-6

※最大傾斜角は、計測地点間の傾斜角の最大値を示しています

中央JCT B·Fランプシールドトンネル工事での対応状況(自治体と連携した路面下空洞調査)

実施状況

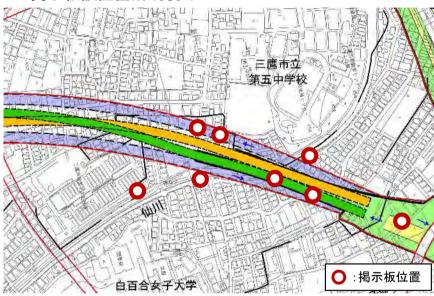
● 掘進作業実施前に、今後掘進する区間の安全を確認するため、公道を対象に路面下空洞調査を 実施しています。

(車道部) (歩道部)

45


中央JCT B·Fランプシールドトンネル工事での対応状況(情報の提供)

本では対し、いっていました中のので、東京市で大きには、東京したセラングできました。 また、大き様というでは大き様である。大二人ではない。これにより、 Type C、通過機関での対象が同じの対象をよったとはできましている場合リティンタ


通過後1ヶ月

de number a ser a

実施状況 ホームページや現場付近に設置する掲示板にてシールドエ事の掘進状況やモニタリング情報を

■掲示板設置筒所(現状)

■掲示板での公表

モニタリング情報公表例

CONTRACTOR OF CO

t discount ment on the title is discount ment of the

されてす。 ないのは存っな(ジャンの前)、ためつくとかいるシードをは、同年にすった。 のは、自分をデースが、すってはない。 たいます ジールを含みないは特別 のは各年がという。 できないから、またでは「ジーンスだらい。 する に、していけど、ドルモの記念すいか。 はため口には特別できない。 たま できないないないない。 たいも同じない、これで再発を記しました。 たま は、他のでは、ままないない。 これでは、これで再発を記しました。

いっちにするから登入されて使いませて十分をもですを行いませった。または まても時に「このなわないといます」

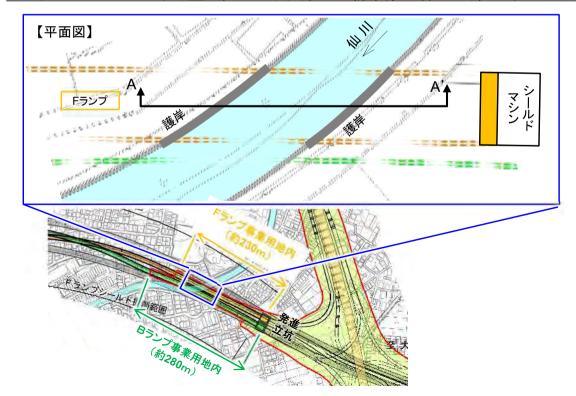
新聞に、はずらか、無日を水く環境を興事家に「行行を「H. か. ハン・*さんかっ

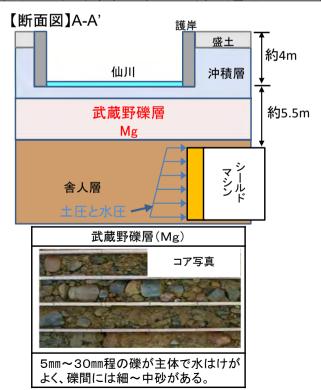
EUCE COMPAN (ACCOUNT OF ACCOUNT OF ACCOUNT

通過1ヶ月前

今後の掘進について

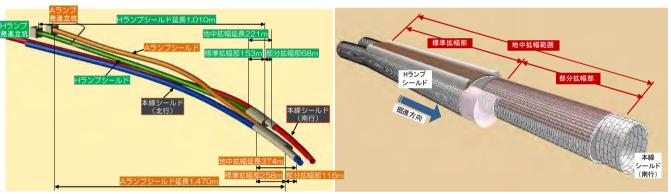
- 第26回(令和4年12月1日)東京外環トンネル施工等検討委員会において、中央JCT B・Fランプシールドトンネル工事の「再発防止対策及び地域の安全・安心を高める取り組み」について、妥当性を確認しております。
- 第32回(令和7年7月25日)の東京外環トンネル施工等検討委員会において、中央JCT B・Fランプシールドトンネル工事の再発防止対策等が有効に機能していることを確認しております。
- これを踏まえ、中央JCT Bランプシールドトンネル工事については、令和7年9月中旬以降に準備が整い次第、順次、事業用地外の掘進作業を丁寧かつ慎重に行ってまいります。また、中央JCT Fランプシールドトンネル工事については、引き続き、事業用地内の掘進作業を進め、準備が整い次第、順次、事業用地外の掘進作業を丁寧かつ慎重に行ってまいります。

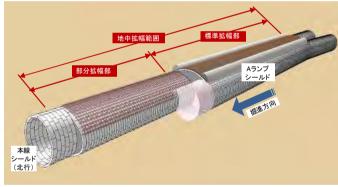



仙川通過時の掘進管理

■河川部への掘進添加材等漏出の可能性について

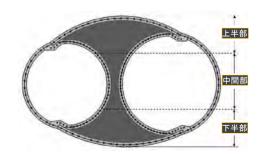
- ●仙川護岸と河床の境目において、土水圧の変化が生じますが、護岸に変状を与えない切羽圧力で掘進する必要があるため、河床に対しては圧力が高い状態になると想定され、間隙水圧が上昇し、地盤中に含まれる泥分が押し出され、河川内に漏出する可能性があります。また、シールド掘進部と河床部の間の地層に空隙が多い場合、掘進のために注入した<u>鉱物系添加材が</u>武蔵野礫層に逸脱し、その一部が河川内に漏出する可能性があります。
- ●これらの漏出を抑制するため、護岸沈下と泥分・鉱物系添加材漏出を生じさせない最適な圧力管理を仙川横断前の事業用地内で確認することや、掘進添加材を調整するなど施工時の対策を行います。
- ●仮に漏出した場合でも、地盤中に含まれる泥分は自然地盤に存在するものであり、<u>鉱物系添加材についても、自然由来の鉱物</u>であることから、<u>環境への影響は発生しない</u>と考えていますが、安心確保のため、掘進前・中・後においてランプ交差部とその上流・下流の3か所において水質調査を実施します。
- ●また、河川通過後の気泡材を添加材として使用する区間において、ごく一部の空気が、河川内に漏出する可能性があります。
- ●仮に漏出した場合でも、地中から漏出した空気は、大気に対して微量であり希釈されるため、<u>周辺環境に影響を与えるものではない</u>と考えております。

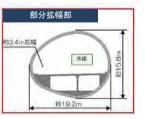

※Bランプについては、地盤に含まれる泥分や鉱物系添加材の一部が河川内に漏出することなく、令和7年4~5月に通過しました。



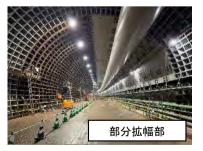
東名JCT地中拡幅部の概要

- ●第30回(令和6年9月10日)東京外環トンネル施工等検討委員会において、東名JCT地中拡幅工事の施工計画及び地域の安全・安心を高める取組みは、施工を行う上で安全性・確実性が確保された妥当なものであること等が確認されました。
- ●東名 JCT 地中拡幅部は、多くの施工実績を有する都市部山岳工法(NATM)を適用するとともに、中央環 状品川線で施工実績を有する「セグメントを用いたシールドトンネル地中拡幅工法」と部分拡幅部におけ る「本線シールドトンネルを利用した本線部分拡幅工法」を適用し、現在準備工を実施しています。
- ●東名JCTの地中拡幅部の施工状況を踏まえ、中央JCT、青梅街道ICの地中拡幅部についても引き続き検討を進めていきます。




東名JCT全体概要図

東名JCT地中拡幅(南行)全体概要図


東名JCT地中拡幅(北行)全体概要図

東名JCT ランプシールドトンネル・地中拡幅の断面図

東名JCT地中拡幅(南行)の現地の状況

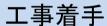
今後の工事状況などのお知らせについて

工事の進捗状況にあわせたお知らせ

●トンネル地上部周辺にお住まいの皆さまには、掘進作業の準備が整った時点、シールドマシン到達前、シールドマシンの通過前後など工事の進捗にあわせお知らせチラシを配布します。

緊急時やその他必要により各種調査を実施する場合など

●地上部での振動・騒音、地表面計測の作業予定、状況やシールドマシンの位置、緊急時やその他必要により実施する各種調査内容や時期など、箇所周辺の皆さまにお知らせをいたします。


家屋調査について

●工事は細心の注意を払って進めてまいりますが、万が一、建物や工作物に損害等が発生し、工事に起因するものと確認された場合には、当該損害等に対して補償をさせていただくために、工事施工前の建物等の状況を把握する家屋事前調査を実施しております。

工事による建物等に損傷等が生じた場合の対応の流れ

事前調査(工事開始前)

●専門機関による調査、写真及びスケッチによる調査記録

損害等の申出

原因、建物等の調査

補修等対応

工事完了

損害等の申出

原因、建物等の調査

補償等対応

建物等の損傷等が生じた場合は、ご連絡ください。

建物等の損傷等の状況および、発生原因の調査をします。

日常生活に支障をきたす場合、応急補修等の対応をします。

●工事完了前でも、お申込みいただけます。

●工事期間中に損害等が発生した場合

建物等の損傷等が生じた場合は、ご連絡ください。

建物等の損傷等の状況および、発生原因の調査をします。

調査結果に基づき、補償などを対応します。

家屋調査について

- ●平成27年度以降、沿線にお住まいの方にも家屋事前調査を実施させていただきましたが、 今後、下記の方を対象に家屋事前調査を実施いたします。
 - ✓ 今まで調査未実施で新たに調査をご希望される方
 - ✓ ご自宅を新築された方
 - ✓ ご自宅の建替えやリフォームをされた方
- ●過去に実施させていただいた調査結果については今後も有効なものとして取扱いたしますが、 再度の調査をご希望される方は、下記お問合せ先までご連絡ください。
- ●家屋事前調査をお受けいただくかは任意であり、みなさまのご意向に沿って調査を実施いたします。

●家屋事前調査の進め方

チラシ配布

●調査範囲の各戸にご案内のチラシを投函します

日程調整

●調査会社が各戸にお伺いし調査の日程調整を行います

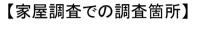
調査実施

●調査会社が各戸にお伺いし調査を実施します

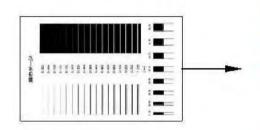
報告書のお渡し

●調査会社が各戸にお伺いし調査結果をご説明し、報告書を手交します

世田谷区・狛江市・調布市・三鷹市内の家屋調査に関するお問い合せ先

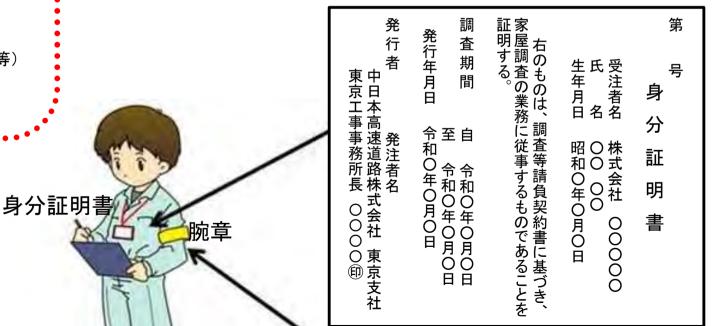

中日本高速道路㈱ 東京支社 東京工事事務所

TEL:0120-016-285(フリーコール:受付時間 平日9:00~17:30) FAX:03-3770-6281


e-mail:mail-gaikan@c-nexco.co.ip

家屋調査について

●建物基礎の地盤沈下、外壁や基礎のひび割れの幅や長さなどをスケッチ・写真撮影後、調書にとりまとめたうえ記録をご協力いただいた方にお渡しするとともに、事業者でも成果品として厳重に保管します。なお、調査結果は当該目的以外には使用いたしません。



- ◆基 礎
- ◆軸 部(柱·敷居)
- ◆開口部(建具等)
- ◆床
- ◆天 井
- ◆内 壁
- ◆外 壁
- ◆屋 根
- ◆水回り(浴槽、台所、洗面所等)
- ◆外 構(屋外工作物)
- ◆井戸の状況

クラックスケール

家屋調査 調査員

※調査箇所は家具等の移動は行わず、 目視で確認できる範囲となります。

※所要時間:3時間~半日程度(一般的な家屋の場合)

相談窓口について

■相談窓口とフリーダイヤルの開設状況

●中央JCT南側ランプシールドトンネル工事に関して、地域住民の方からご相談やご意見をお受けするために、 相談窓口を開設するとともに、お問合せ用のフリーダイヤルを開設しています。

【場所】

東京都調布市緑ヶ丘1丁目38番内

【運営について】

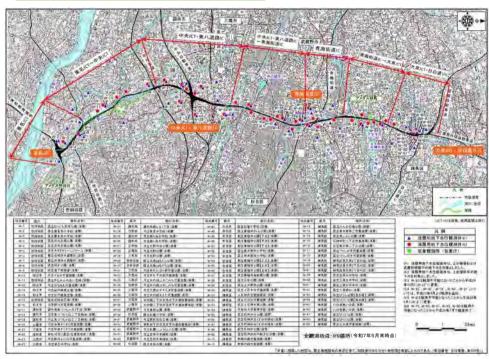
- ・開設日:月曜日から金曜日(祝日は休み)
- •開設時間:9:00~16:00
- ・混雑した場合はお待ちいただくことがございます。予めご了承ください。

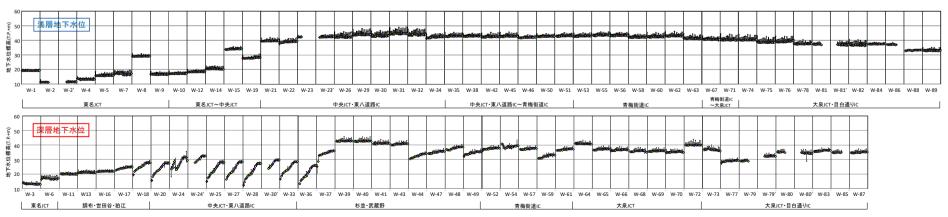
【お問合せ先】

TEL:0120-737-220(フリーダイヤル:平日9:00~16:00)

地下水位の観測結果について

これまでの取り組みの概要


- ・外環事業では、沿線環境への影響を考慮し、 常時地下水位観測を行い周辺環境への影響を 監視しています。
- ・地下水位観測は、平成22年度より連続観測を実施しています。



地下水位の観測状況

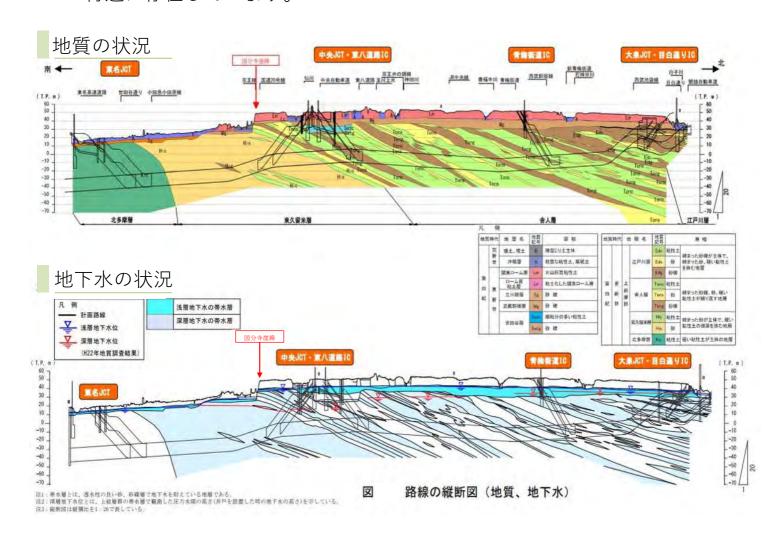
地下水位の観測結果

地下水位観測地点位置図

・令和7年度地下水位の観測結果は、令和7年4月より令和7年5月末までの値を表記しています。

浅層地下水:地表面から約5~25mの立川礫層及び武蔵野礫層中に存在する地下水を浅層地下水と定義しました。

深層地下水:立川礫層及び武蔵野礫層より深い位置の上総層群中の砂層及び砂礫層中に存在する地下水を深層地下水と定義しました。


東京外環周辺の地質・地下水について

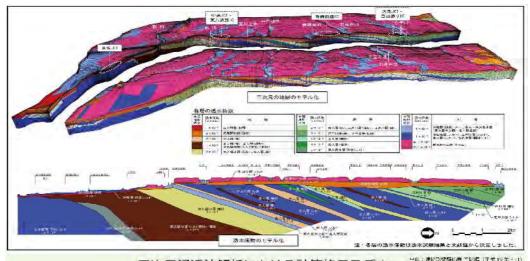
これまでの取り組みの概要

- ・東京外環(関越〜東名)の地下構造物により、地下水が遮断され、地下水位の低下による地盤沈下、湧き水や井戸水が涸れてしまうのではないか心配があるかと思います。
- ・そのため、外環事業では浅層地下水及び深層地下水の水位を観測し、観測 結果を公表するなど、皆さまがお住まいの周辺環境の保全に努めながら工 事を進めて参ります。

東京外環(関越~東名)周辺の地質・地下水の概要

- ・東京外環(関越〜東名)周辺の地質は、国分寺崖線を境にして北側は台地、 南側は低地となっています。
- ・浅層地下水の帯水層は、国分寺崖線の南側は立川礫層(深度3m~6m)、 北側は武蔵野礫層(深度10m~20m)であり、地下水面は概ね帯水層上端 付近に存在しています。

本線シールドによる深層地下水への影響について


これまでの取り組みの概要

- ・東京外環(関越〜東名)の本線シールドによって地下水が引き込まれ、地上 部の河川や池沼が涸れてしまうのではないか心配があるかと思います。
- ・そのため、外環事業では、トンネル構造の密閉性が高く、地下水に与える影響が小さいシールド工法を採用しています。
- ・三次元浸透流解析と呼ばれる数値シミュレーションにより地下水位及び水圧 の変動量を予測した結果、深層地下水の水圧低下量は、年間の水圧変動量以 下とわずかであり、影響の範囲内に深層地下水を利用している井戸が存在し ないことから、深層地下水は保全されるものと考えています。

三次元浸透流解析による予測

三次元浸透流解析モデルは、既存資料及び現地調査結果を基に、地層、地下水、 構造物を三次元モデル化し、降水量や井戸の揚水量等の条件を設定しました。

三次元浸透流解析は、現況再現解析により三次元浸透流解析モデルの検証を実施した後、事業の実施による地下水影響解析及び環境保全措置の検討を実施しました。

三次元浸透流解析における計算格子モデル

深層地下水への影響

大気質・騒音・振動の調査結果について【中央JCT】

これまでの取り組みの概要

・外環事業では「環境影響評価書」及び「対応の方針」に基づき工事中の 大気質(NO2、SPM、粉じん等)、騒音、振動のモニタリング調査を 行っています。

調査内容

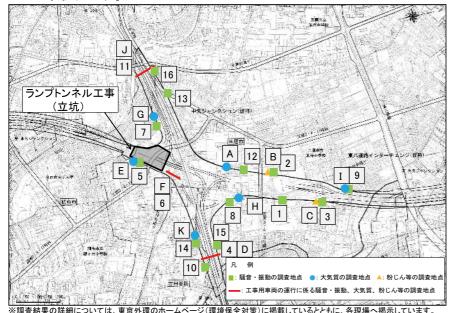
■大気質の調査

- ・建設機械の稼働や工事用車両の運行に伴う二酸化窒素(NO2)及び浮遊粒子状物質(SPM) を季節毎(年4回)、1週間、現地測定
- ・また、粉じん等を季節毎(年4回)、1箇月間、現地測定
- ■騒音、振動の調査
 - ・建設機械の稼働や工事用車両の運行に伴う騒音、振動を月1回、1日間、現地測定

モニタリング状況

大気質(NO2、SPM)測定状況

大気質(粉じん等)測定状況



騒音、振動測定状況

調査結果(R7.3~R7.5)

■中央JCT周辺

○建設機械の稼働に係る調査結果

調査項目	調査結果	条例、環境基準による 基準値又は参考値
騒音レベル	69~73dB	条例による勧告基準 80dB以下
振動レベル	49~52dB	条例による勧告基準 70dB以下
二酸化窒素	0.005~0.015ppm	環境基準により0.04 ~0.08ppm又はそれ以下
浮遊粒子状物質	0.023~0.037mg/mi	環境基準により0.20mg/㎡以下
粉じん等	_	指標となる参考値により 20t/km ¹ /月

〇工事用車両の運行に係る調査結果

調査項目	調査結果	環境基準による 基準値又は参考値
騒音レベル	54~65dB	環境基準により70dB以下
振動レベル	40~51dB	要請限度により65dB以下
二酸化窒素	0.005~0.019ppm	環境基準により0.04 ~0.08ppm又はそれ以下
浮遊粒子状物質	0.016~0.040mg/m²	環境基準により0.20mg/㎡以下
粉じん等	2.2~5.3t/kmf/月	指標となる参考値により 20t/km ² /月

※ 調査結果は調査地点1~16における膳音・郷助レベルの各関査日最大値の幅値、調査地点A~Jにおける浮遊粒子状物質の各関査日最大値の幅値を表す。二酸化窒素は1日の平均値の幅値、勢じん等は調査地点の幅値を表す。なお、建設機械の稼働に係る粉じん等の調査地点BCの周辺では、R7.3~R7.5は工事が行われなかったため、調査を実施していない。

安全対策の取り組み事例トンネルの防災安全設備

これまでの取り組みの概要

災害や事故発生時におけるトンネルからの避難方法や、事故防止の対策が十分取られているかご心配かと思います。災害時における安全確保や事故発生時の対策等については、有識者の意見も伺いながら、検討を進めています。

首都高速 中央環状線 4号新宿線~5号池袋線(山手トンネル)の事例

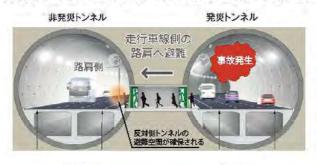
通常時の安全設備

火災発生時の防災設備

火災発生時、ドライバーの方に利用していただく設備

利用者等の避難について

これまでの取り組みの概要


災害や事故発生時におけるトンネルからの避難方法や、事故発生時の対策等 については、有識者の意見も伺いながら、検討を進めています。

<u>避難方式につい</u>て

- 火災時等における避難安全性の確保を目的とし、避難施設を設置します。
- 設置する避難施設は、本線・ランプの状況に応じ、次の避難方式を検討します。

< 横連絡坑方式の避難イメージ> 発災トンネルから非発災トンネル(安全空間)へ、横連絡坑を利用して避難

上下線連絡口

首都高速中央環状新宿線の例

<床版下方式の避難イメージ> 発災トンネルの床版下(安全空間)へ、すべり台を利用して避難

すべり台(路面下から)

お問合せ先・HP等

お問合せ内容 お問合せ先 国土交通省 関東地方整備局 東京外かく環状国道事務所 TEL: 0120-34-1491(フリーダイヤル) 受付時間: 平日 9:15~18:00 今回の説明内容に関するこ لح 東日本高速道路株式会社 関東支社 東京外環工事事務所 TEL: 0120-861-305(フリーコール) 家屋調査に関すること NEXCO 受付時間: 平日 9:00~17:30 外環事業全般に関すること 中日本高速道路株式会社 東京支社 東京工事事務所 TEL:0120-016-285(フリーコール) NEXCO P B A 受付時間: 平日 9:00~17:30 今回の説明内容に関する e-mail: tokyo-gaikan@e-nexco.co.jp ご質問の受付 練馬区、杉並区(久我山4丁目を除く)、武蔵野市(吉祥寺南町3丁目 を除く)の外環沿線地域の方 TEL 03-6904-5886 24時間工事情報受付ダイヤル (工事に関するお問合せ) 世田谷区、狛江市、調布市、三鷹市、杉並区(久我山4丁目)、武蔵 野市(吉祥寺南町3丁目)の外環沿線地域の方 TEL 03-5727-8511

HP掲載内容	HP掲載先
外環事業全体の状況 最新情報	○外環プロジェクト https://tokyo-gaikan-project.com/ ○国土交通省 東京外かく環状国道事務所 https://www.ktr.mlit.go.jp/gaikan/
シールドトンネルエ事の 詳細な施エデータ	○東京外環 トンネル施工等検討委員会 委員会資料 https://www.ktr.mlit.go.jp/gaikan/pi_kouhou/tu2_kiroku.html □流程と回

<シールドマシン関係>

羽(きりは) キンプレート ッターヘッド ャンバー	シールドマシンの先端の地山を掘削している面のこと。 シールドマシンの外側(外周部)の鋼板(各装備を保護するもの)。 シールドマシン前面の回転して地山を掘削する部分。地山を掘削する刃(ビット)等が備わっている。 カッターヘッドと隔壁との間に土砂を充満させる空間。常に掘削した土砂で充満されており、充満した土に圧力を加えることで、切羽の安定を図る。 チャンバーとシールドマシン機内を隔てる壁。
ッターヘッド	シールドマシン前面の回転して地山を掘削する部分。地山を掘削する刃(ビット)等が備わっている。 カッターヘッドと隔壁との間に土砂を充満させる空間。常に掘削した土砂で充満されており、充満した土に圧力を加えることで、切羽の安定を図る。 チャンバーとシールドマシン機内を隔てる壁。
	わっている。 カッターヘッドと隔壁との間に土砂を充満させる空間。常に掘削した土砂で充満されており、充満した土に圧力を加えることで、切羽の安定を図る。 チャンバーとシールドマシン機内を隔てる壁。
ャンバー	り、充満した土に圧力を加えることで、切羽の安定を図る。 チャンバーとシールドマシン機内を隔てる壁。
壁(かくへき)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ールドジャッキ	シールドマシンを前進させるための押す力を加えるもの。
クリューコンベヤー	チャンバー内の土砂を排出する機械。シールドマシンが前進した分の土量と排出する土量を調整させるため、回転数等の調整を行う。
性流動性 そせいりゅうどうせい)	土砂の性状を表現する言葉で、力を加えると容易に変形し、適度な流動性を有した性状のこと。(切羽の安定に必要な土圧を保持し、シールドの掘進量にあわせた土量の排出を行うために、チャンバー内に充満した掘削土砂が適度な流動性を有することが必要。)
塞(へいそく)	チャンバー内で土砂の堆積によりカッターが回転不能になること。
圧の不均衡(ふきんこう)	チャンバー内圧力と切羽土圧のつり合いが取れなくなること。
水性(しすいせい)	水が通りにくい性質のこと。(チャンバー内に充満した土砂は、地下水の流入が生じないよう止水性を高めることが必要。)
土圧(でいどあつ)シールド	掘削土を泥土化して所定の圧力を与えることにより切羽を安定させるシールド工法。
グメント	シールドトンネルの壁面を構築するコンクリート又は鋼製のブロック。
ング	セグメントを円形に組立てたシールドトンネルの一単位のこと。
進(くっしん)	カッターヘッドを回転させて掘削し前進すること。
ャンバー内圧力勾配 いあつりょくこうばい)	チャンバー内に生じた鉛直方向の圧力変化量のこと。
ッタートルク	切羽を掘削するのに必要なカッターの回転力。
止土圧(せいしどあつ)	切羽面とマシン圧力が釣り合っている圧力のこと。
働土圧(しゅど う どあつ)	切羽面がマシンを押している圧力のこと。
備圧(よびあつ)	掘進時に圧力損失を補完するための圧力。
備(そうび)トルク	マシンが備えているカッターを回転させる力。
カ分布(あつりょくぶんぷ)	切羽面の圧力の分布のこと。
速度(かそくど)	単位時間当たりの速度の変化率のこと。
土(はいど)	チャンバー内からシールド内に排出する土。
削土(くっさくど)	シールド掘進時に掘削した土。
視(かんし)モニター	シールド操作室または中央制御室でシールド稼働状況を総合的に監視する画面のこと。
砂ピット(どしゃ)	掘削した土砂を一時的にストックする仮の置き場
ールシール	裏込材や土砂を伴う地下水のシールド内への流入を防止するための部品
ールクリアランス	シールドの後端部におけるセグメントの外側とシールド機筒部分内側の間の施工上の 余裕量
ールボイド	セグメント外面と掘削された地山との空隙のこと
込材(うらごめざい)	テールボイドを充填するための材料。

62

<土質関係>

名称	説明
地山(じやま)	自然のままの地盤。
ローム質土層(しつどそう)	砂やシルトや粘土などが含まれた混合土層。
砂層(さそう)	砂を主体とする地層。
礫層(れきそう)	礫を主体とする地層。
凝灰質粘土 (ぎょうかいしつねんど)	火山から噴出された火山灰が堆積してできた粘土。
細粒分(さいりゅうぶん)	地盤を構成する土粒子の内、小さな土粒子(0.075mm未満のシルト・粘土)のこと。
細砂分(さいさぶん)	地盤を構成する土粒子の内、粒径が0.075mm~0.25mmの土粒子のこと。
均等係数 (きんとうけいすう)	砂の粒径の均一性を示す指標。1に近いほど粒径がそろっている。
配合試験(はいごうしけん)	土砂と添加材の適正配合を確認する試験。
不透水層(ふとうすいそう)	シルトや粘土などのように水を通しにくい地層。
透水性(とうすいせい)	土の中での水の通しやすさ。
武蔵野礫層 (むさしのれきそう)	礫を主体として中程度〜粗い砂を含んだ締まった礫層で、水を通しやすい地層。
細粒分含有率(さいりゅうぶん がんゆうりつ)	75μmふるいを通過分の土砂が占める割合を、質量百分率で表したもの。
通過質量百分率(つうかしつ りょうひゃくぶんりつ)	ふるいにより分けられた土粒子の割合を、質量百分率で表したもの。
帯水層(たいすいそう)	砂や礫などのように地下水をよく通しやすい地層。
高水圧層(こうすいあつそう)	大きな圧力を有した地下水のある地層。
ミニスランプ	土の流動性を確認する試験。
粒度分布(りゅうどぶんぷ)	どのような大きさの土粒子が、どのような割合で含まれているかを示す指標。
ベルトスケール	ベルトコンベヤーによって輸送された土を計量する機器。
泥漿(でいしょう)	個体粒子が液体の中に懸濁している流動体。泥状の混合物。

土の粒径区分

粒径mm	0.005	0.075	0.25	0.85	2	4.75	19	75
	л⊦ Т	シルト	細砂	中砂	粗砂	細礫	中礫	粗礫
	粘土 シル			砂			礫	
	細粒分				粗料	立分		·

※地盤を構成する土の粒径の分布状態を粒径ごとに分類するもの

<材料関係>

名称	説明
添加材(てんかざい)	掘削土砂を泥土化(塑性流動化)するために添加する材料。
気泡材(きほうざい)	添加材の一種で、シェービングクリーム状のきめ細かい泡。
起泡溶液 (きほうようえき)	気泡材を作るための元材料。これに空気を混合して発泡させることで気泡材を 作成する。
滑剤(かつざい)	摩擦抵抗を少なくするためにシールドマシンと地山との間に充填する材料。
良分解性(りょうぶんかいせい)	環境中に残留することなく容易に分解する物質のこと。
鉱物系(こうぶつけい)	性質が均一で天然に存在する物質のこと。
高分子系(こうぶんしけい)	土の水分を凝集させる物質のこと。

<調査関係>

名称	説明
ボーリング調査	地中に孔を掘り、地盤の状況を確認する調査。
微動アレイ調査	地表面から行う地盤の物理探査手法。地盤は微小な振動(人工振動・交通振動・海岸線に押し寄せる波浪振動)などによって絶えず振動をしており、この微小な振動を測定・解析することにより地盤の状況を把握する。
音響トモグラフィ	ボーリング孔に設置した発信器から周波数と振幅を制御した音波を発信し、地中を伝播してきた音波を受信器で受信し、地盤の状況を把握する。
S波	地盤を伝わる振動横波。固い地盤は、速度が速くなる。
P波	地盤を伝わる振動縦波。固い地盤は、速度が速くなる。
N値	地盤の固さの指標で、数値が高いと固い。
水準測量	高低差や標高を求める測量のこと。
GNSS	人工衛星を利用した測位システムの総称で、複数の衛星から信号を受信し、地上での現在位置を計測するシステム。
合成開口(ごうせいかいこう) レーダー	レーダーの一種で航空機や人工衛星に搭載し、電磁波を照射し反射して返ってきた信号で観測するもの。
地表面傾斜角	シールド掘進前の水準測量で得た観測点の標高を基準とし、その後の観測点の標高の変位で発生した地表面の傾斜角のこと。
3D点群(てんぐん)データ	3次元レーザースキャナーなどで物体や地形を計測したデータ。
路面下空洞調査	地中レーダー探査機を用いて、路面下の空洞発生の有無を探査・解析する調査。異常信号が確認された場合、空洞がある可能性がある部分の路面を削孔してスコープカメラにより確認する。

くその他>

名称	説明
開削(かいさく)	土地や山などを掘り起こして平らにし、構造物を構築すること。
パイプル一フ	本体構造物の掘削作業を安全に構築するためにパイプを本体構造物 の外周に沿って等間隔にアーチ状または柱列状に水平に打設し、屋根 や壁をつくり、地上および地下埋設物などの防護を目的とする補助工法
土被り(どかぶり)	地中に埋設された構造物の天端から地表面までの高さ。